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Abstract. The lack of direct experimental evidence of the detection of the asymptotic critical
behaviour in binary mixtures has led to the conjecture that the extent of the critical regime
is exceedingly small in these systems. We address this problem from the theoretical side and
find that: (i) the strong crossovers which affect the critical phenomena in mixtures are due
to the competition between two different renormalization group fixed points; (ii) the crossover
temperature is governed by a characteristic parameter which depends on the range of interactions
as well as on purely thermodynamic quantities; and (iii) the extent of the asymptotic region is
not necessarily small: specific systems and regimes allowing for the experimental observation
of the true critical exponents are identified.

The experimental study of the phase diagram and of the critical phenomena in binary
mixtures has drawn out a picture considerably richer than that for one-component fluids
[1, 2]. On the theoretical side, however, the situation is not firmly established. In
particular, the interpretation of critical phenomena in mixtures still rests largely upon the
phenomenological approach originally proposed by Fisher in a somewhat different context
[3] and subsequently specialized to binary mixtures in a systematic way [4]. Recently, a
microscopic justification of this hypothesis has been provided by use of the hierarchical
reference theory of fluids (HRT) [5]. The basicansatzof the phenomenological approach
is that the singular contribution to the grand potential can be identified, in the critical
region, with the scaling function of the one-component system, provided that the ‘thermal’
and ‘magnetic’ scaling fields are substituted for with two effective fields that depend
analytically on the temperature and on the chemical potentials of the components. This
approach has led to several important predictions concerning the critical behaviour of the
thermodynamic quantities in binary mixtures, some of which are qualitatively different from
the corresponding results for the pure components: for example, a ‘renormalization’ of the
critical exponents along certain thermodynamic paths is predicted, where the renormalizing
factor 1/(1 − αI ) is related to the critical exponentαI of the constant-volume specific
heat for the one-component case. In the following the subscript ‘I ’ will refer to critical
exponents for one-component (Ising) systems. Also, the isothermal compressibility at
constant composition (κT ) on the critical isochore is predicted to diverge weakly as a function
of temperature with an exponentαI/(1−αI ), while the specific heat (CV ) does not diverge at
all. However, the experimental results [6] have shown that the critical phenomena in binary
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mixtures do not conform to these predictions. This has been explained by invoking strong
crossover effects which enormously reduce the asymptotic critical region. This makes it
difficult to unambiguously confirm the theoretical predictions: in the case of the isothermal
compressibility even the existence of a critical divergence seems to be questionable, as this
quantity usually appears to saturate at a constant value rather than diverge. The interest in
crossover phenomena in mixtures has now been aroused again, and some studies have been
made, at least in the limit of a dilute or a weakly compressible mixture, in the framework
of the aforementioned phenomenological approach [7].

In this article, we address the crossover problem in mixtures by the use of HRT [8]: we
show that its extension can be estimated in terms of the microscopic properties of the system
and find that, under suitable conditions, the crossover region falls in an easily accessible
region.

HRT can be regarded as a method for implementing the basic renormalization group
(RG) idea of the gradual inclusion of long-wavelength fluctuations in the context of a genuine
liquid-state theory. HRT has been applied to a number of systems ranging from simple fluids
to Ising models where ‘exact’ results are available: the comparison has shown that HRT
is able to precisely locate the critical points, the coexistence curve and the equation of
state of these models [8]. This approach provides a microscopic derivation of the effective,
field theoretical actionS which governs the long-wavelength fluctuations, starting from the
physical Hamiltonian of the model. Moreover, usual RG concepts, like fixed points and
flow of coupling constants are naturally present in this framework.

In the case of binary mixtures, HRT predicts a long-wavelength effective action of the
general form

S[φ1, φ2] =
∫

dx

{
1

2
|∇φ1|2+H [φ1, φ2]

}
H [φ1, φ2] = rφ2

1 + g2φ2
2 + uφ4

1 + wgφ2
1φ2

(1)

where thetwo fluctuating fields (φ1, φ2) physically represent suitable combinations of
density and concentration fluctuations. The difference in character of the fluctuations in
the two directions (φ1, φ2) is manifest in the effective action (1), where the gradient term of
φ2 which describes the spatial fluctuations of the order parameter is absent, resulting in the
lack of a natural length scale forφ2. This effective action is a natural generalization of the
usualφ4-form for one-component fluids and refers to the region of the phase diagram where
odd operators in the fieldφ1 vanish. Analogously to the one-component system, all fixed
points lie in this symmetric manifold. The four coupling constants which defineS[φ1, φ2]
are non-universal parameters related, by HRT, to the microscopic features of the model.

The momentum-space RG equations which describe the long-wavelength behaviour of
this model are obtained by introducing an infrared cut-offQ on fluctuations and examining
how S[φ1, φ2] is modified when fluctuations with wavevectork > Q are integrated out.
As usual, the effective action maintains the same formal structure, at least near the upper
critical dimensionality (d = 4), while the coupling constants(r, g, u,w) change their values
according to differential equations [5] which can be obtained by standard methods, at least
to leading order in theε-expansion (whereε = 4 − d). The evolution stops when the
cut-off Q matches the inverse correlation length:Q ∼ ξ−1 ∼ Qr1/2

Q , i.e. when the system
is mapped out of the critical regime.

The possible fixed points of this set of RG equations have been studied in reference
[5] and include, among others, the ‘one-component’ (1C) and the ‘two-component’ (2C)
fixed points. By linearizing the evolution equations around their fixed-point solutions we
can investigate the stability of these solutions In the symmetric subspace, the 1C fixed point
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is characterized by two relevant eigenvalues: the thermal one3T = 2− ε/3 which leads
to Ising critical exponents; and an additional ‘mixing’ eigenvalue3× = ε/3 leading to the
crossover exponent3×/3T = αI . Instead, the 2C fixed point has a single relevant (thermal)
operator with eigenvalue3T = 2− 2ε/3 which gives a diverging correlation length with
exponentν = 1/3T = νI /(1 − αI ) in agreement with the phenomenological approach.
Asymptotically close to a generic point on the critical line of a binary mixture, the RG
flow is governed by the 2C fixed point which leads to a strong divergence of fluctuations
of theφ1-field with exponentγI /(1−αI ), and to a weak divergence ofφ2-fluctuations with
exponentαI/(1− αI ). The basic difference between the structure of the 1C (unstable) and
2C (stable) fixed points is the vanishing of the ‘mixing term’w∗ in the former case. Clearly,
if this term happens to be small at the beginning of the RG evolution, i.e. at a mean-field
level, the flow will first feel the influence of the unstable 1C fixed point, giving rise to
effective critical exponents of the Ising type, as observed experimentally. Eventually, the
presence of the relevant crossover eigenvalue3× > 0 will drive the RG flow away from
the 1C fixed point and the real asymptotic critical exponents associated with the 2C fixed
point will be detectable. But this will occur only at reduced temperatures smaller thant×,
which can be estimated [5] on the basis of the RG evolution equations:

t× ∝ (r − rc) '
(
w

w∗

)2/αI

(2)

with αI ' 0.12 in a three-dimensional system. Although this estimate does not give a
unique definition of the crossover temperature, it clearly shows how this basic quantity
scaleswith the microscopic parameters, and particularly with the ‘mixing ratio’w/w∗. Due
to the large exponent in equation (2),t× is quite sensitive to this parameter.

In order to analyse the extent of crossover phenomena in realistic models of mixtures, the
key ingredients, missing in the usual RG treatments of this problem, are (i) the relationship
between the scaling fields(φ1, φ2) and the density–concentration fluctuations together with
(ii) a realistic estimate of the bare parameters(r, u, g,w). This connection is provided
by HRT which gives a precise correspondence between physical variables and effective,
field theoretical actions. In particular, a previous study [9] showed that the direction
of strong fluctuationφ1 in the density–concentration plane is related to experimentally
available quantities such as the partial molar volumesvi ≡ (∂V/∂Ni)T ,P . HereV , T , P
are respectively the volume, the temperature, and the pressure of the mixture, andNi is the
number of particles ofi-type. In order to identify the essential features of the crossover
phenomena, here we adopt a simplified analysis where short-wavelength effects are treated
at a mean-field level. This leads to an analytic relationship between the parameters defining
the effective action and the physical variables. A careful analysis shows that, along the
mean-field critical lines, the key parameterw, which governs the flow towards the 2C fixed
point, can be written as the product of two terms: a ‘fluctuation’ contributionwfl, which
involves the range of the interparticle interactions; and a termwth which instead contains
only thermodynamic quantities like the aforementioned partial molar volumesvi , the molar
fraction x ≡ N2/(N1 + N2), the volume per particlev ≡ V/(N1 + N2), the isothermal
compressibility at constant compositionκT , and the temperatureT . Specifically, one finds

wfl = v2
1 + v2

2

b11v
2
2 + b22v

2
1 − 2b12v1v2

3

πQ
1/2
0

(3)

wth =
(
kBT

κT

)1/2
v3

v2
1 + v2

2

1

1− x
(
∂v2

∂x

)
T ,P

. (4)
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Figure 1. (a) Mean-field critical lines on the density–concentration plane for a neon–argon
mixture (dashed line) and an argon–xenon mixture (full line). The arrows along the argon–xenon
critical lines point in the direction of the strong fluctuation, which gives the order parameter
of the transition. (b) The mixing ratio appearing in equation (2) for an argon–xenon and a
neon–argon mixture.

The coefficientsbij in equation (3) represent the second moment of the attractive interactions
between two particles of speciesi andj whileQ0 is a characteristic ultraviolet cut-off which
gives a measure of the region in momentum space where fluctuations become important,
and can be estimated as the typical inverse diameter of the molecules. It is worthwhile to
observe that the values ofbij do not affect the phase diagram at the mean-field level, so
nothing can be said about the value ofwfl by considering the shape of the critical lines. The
form of wfl accounts for the well known Ginsburg result [10], which states that short-range
interactions are more effective than long-range ones in revealing the asymptotic critical
behaviour of the system. Although to be expected, this piece of information is clearly out
of the reach of the phenomenological approach.

Sincewfl behaves smoothly along the critical lines, the main qualitative features of
w are embodied in the thermodynamic contributionwth. It must be explicitly recalled
that equation (4) forwth refers to a mean-field or ‘coarse-grained’ action (1), so from a
phenomenological point of view its validity is limited to the pre-asymptotic region: in fact,
in the very neighbourhood of a critical point, that is forQ → 0, both 1/κT and ∂v2/∂x

would vanish [11]. A region that gives rise to small (although not exactly vanishing) values
of w as a consequence of the behaviour ofwth is the high-density, high-pressure portion of
the critical lines. This part of the phase diagram, where the character of the transition is
generally of the demixing type, with strong concentration fluctuations, is not favourable for
the detection of the true asymptotic regime in an experimentally accessible range.

Two specific examples are considered in figure 1, where we present the mean-field
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Figure 2. A log–log plot of (a) the reduced isothermal compressibility at constant concentration
κred and of (b) the specific heat at constant volume and concentrationCV of an argon–xenon
mixture as functions of the reduced temperaturet for the two critical points A (open dots) and
B (full dots) of figure 1, as calculated from RG equations. The asymptotic behaviour of the
compressibility is shown by a dashed line. In the insets the corresponding effective critical
exponents are reported. The asymptotic value ofγeff is shown in panel (a).

critical lines and the dimensionless mixing ratio appearing in equation (2) for a simple
model made up of additive spheres interacting via a hard-core plus a Lennard-Jones-tail
potential. Two different choices of the diametersσi and of the depth of the attractive well
εij were made [12], so as to model a neon–argon and an argon–xenon mixture. In the figure
the direction of the strong fluctuation in the density–concentration plane is also shown. It
can be seen that in the case of the neon–argon mixture the mixing ratio, and therefore the
crossover temperature, is small everywhere on the critical line. This is actually the situation
encountered in most cases, irrespective of the topology of the phase diagram. In the case of
the argon–xenon mixture, however, the reduced crossover temperature raises very sharply,
and in a narrow region around a xenon concentrationx ' 0.15 reaches a relatively large
value which can be estimated in the experimentally accessible range between 10−2 and
10−3.

The critical behaviours of the compressibility and specific heat, together with the
corresponding ‘effective’ critical exponents (γeff andαeff respectively), are plotted in figure 2
as functions of the reduced temperature for two different points, labelled A and B, on the
Ar–Xe critical lines. The effective exponents are defined as the local slope, in a log–log
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plot, of the physical quantity versus the reduced temperature. In the case of point A,γeff

approaches its asymptotic value (γeff = 0.25 in our approximation) only at extremely small
reduced temperatures, while the specific heat does not even show a well defined power-law
behaviour and the corresponding effective exponent is everywhere larger than half of its
Ising value (αI = 0.2 in this approximation). An estimate of the crossover temperature
can be obtained by considering the inflection point ofγeff leading totA× ' 10−5 for point
A. Instead, the asymptotic critical behaviour can be more easily achieved for point B, at
least as far as the divergence of the compressibility is concerned. By the same criterion as
was introduced for point A, we can estimatetB× ' 10−3 which falls in the experimentally
accessible range. Similarly, the effective exponentαeff vanishes more rapidly, showing the
asymptotic saturation of the specific heat in mixtures. It is noteworthy that the ratio between
the two estimated crossover temperaturestA×/t

B
× ∼ 10−2 agrees with the corresponding

mixing ratio (wA/wB) raised to the power 2/αI , as predicted by equation (2).
It can be seen that a sharp increase of the parameterw such as the one just considered

occurs when a portion of the critical lines gets close to a stability limit. The stability
condition that has to be satisfied for every point in the phase diagram amounts to requiring
that the free energy must have the correct convexity. A critical end-point is an obvious
case in which the stability limit is exactly reached: low-density critical end-points should
therefore be good candidates for the observation of the asymptotic critical behaviour in
mixtures. On the other hand, a stability limit can be approached also along a critical line.
A favourable situation in this respect occurs when the system considered is close to a
change of topology in the phase diagram from class II to class III [1], since at the boundary
between these classes two critical lines touch—at least at the mean-field level—and the
intersection is a point of marginal stability. The argon–xenon mixture actually corresponds
to such a case. It must be noted that this system was chosen in the present context since
in this case the assumption of spherically symmetric interactions postulated in the simple
model considered here is not unrealistic. However, other examples which are probably
much easier to handle experimentally can be pointed out: for instance, it is well known that
in mixtures formed by carbon dioxide or CHF3 plus an aliphatic hydrocarbon (the so-called
CO2 or CHF3 families) a gradual transition from class II to class III is found by considering
hydrocarbons of increasing lengths [1, 13].

On the basis of the present analysis the proximity to a low-density critical end-point or
to a change of topology in the critical lines are then identified as conditions that favour the
experimental detection of the true asymptotic behaviour in binary systems. It must also be
remarked that, since the crossover temperature varies sharply along the critical lines, the
favourable regions are in any case predicted to be rather narrow.
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